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Resonant responses of suspended elastic cables driven by a steady current are investigated.
Phenomenological #uid force models for alternate vortex-shedding are coupled with the
nonlinear partial di!erential equations of cable motion. Decoupled cross-#ow and in-line
vortex-induced vibrations (VIV) are examined "rst using linearized and nonlinear cable models.
The linearized cable model predicts well the basic characteristics of VIV and the nonlinear cable
model captures the hysteresis often observed in experiments. Next, coupled cross-#ow and
in-line vibrations are evaluated by considering two principal coupling mechanisms: (i) cable
structural nonlinearities, and (ii) coupled #uid lift and drag. Attention is focused on a &&worst-
case'' resonant response where the natural frequencies for cable modes in the cross-#ow and
in-line directions are in the same 1 : 2 ratio as the excitation frequencies associated with lift and
drag. The inclusion of cable structural nonlinearities alone leads to coupled responses that di!er
qualitatively (i.e., in number and stability of periodic motions) when compared to those of the
decoupled model. The inclusion of coupled #uid lift and drag produces non-planar &&"gure
eight''motions of the cable cross-section that exhibit similar characteristics to those previously
measured on spring supported cylinders. ( 2002 Academic Press
1. INTRODUCTION

STRUCTURES SUBJECT TO A FLOWING FLUID may experience sustained vibrations under certain
#ow conditions due to the transfer of energy from the #uid to the structure. Such #ow-
induced vibrations exist in diverse engineering applications including heat exchanger
tubes, airplane wings, electric power lines, long span bridges, and underwater risers
and cables. A common #ow-induced vibration derives from the periodic vortex shedding
from a structure. For cables, this vortex-induced vibration (VIV) may promote fatigue
and signi"cantly degrade the service life and performance of any attached structure or
instrument.

While many studies have focused on VIV, this phenomenon is still far from fully
understood due largely to the signi"cant nonlinear mechanisms controlling the #uid and
the structure. Following Strouhal's discovery of the relationship between the vortex-
shedding frequency and the mean #uid velocity, numerous experimental, analytical and
numerical studies have revealed the underlying characteristics of VIV. Extensive reviews are
available in Sarpkaya (1979), Gri$n et al. (1982), Parkinson (1989), and Pantazopoulos
(1994). Experiments show that the frequency of (alternate) vortex shedding predicted by the
Strouhal relation f

s
"St</D (where< is the mean #ow velocity, St is the Strouhal number,

and D is the diameter of the structure) locks onto the natural frequency of a #exible (or
#exibly mounted) structure. This phenomenon, called lock-in, synchronization or wake-
capture, leads to a resonant vibration of the structure. Lock-in can increase the vortex
strength, cross-#ow forces (lift), correlation length, and mean drag.
889}9746/02/020229#17 $35.00/0 ( 2002 Academic Press



Figure 1. Amplitude of cross-#ow vibration of the spring-supported rigid cylinder when the in-line response is
eliminated (- - - -) and when it is partially restrained by elastic supports () ) ) ) ) ) ). Reproduced from Moe et al. (1994).
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The majority of studies concentrate on the cross-#ow (lift direction) response of cylin-
drical structures (rigid or #exibly mounted cylinders, pipes, cables, etc.) that are either
harmonically driven or self-excited by the #uid #ow. Nevertheless, in-line motions may also
coexist though they are often an order of magnitude smaller than cross-#ow motions.
A considerable number of analytical and numerical models have been proposed to evaluate
cross-#ow response including (i) wake-oscillator models (Hartlen & Currie 1970; Skop
& Gri$n 1973; Iwan & Blevins, 1974), (ii) single-degree-of-freedom models (Staubli 1983;
Goswami et al., 1993), (iii) random vibration models (Blevins & Burton 1976; Kennedy
& Vandiver 1979), and (iv) numerical models based on the Navier}Stokes equation
(Lu & Dalton 1996; Blackburn & Henderson 1996).

By contrast, only a few analytical models have been proposed for the in-line response of
structures (Currie & Turnbull 1987; Naudascher 1987). As revealed in experiments (Bishop
& Hassan 1964), the frequency of in-line vibration is twice that of cross-#ow vibration.
Unlike the cross-#ow VIV, in-line vibration possesses two resonances (Currie & Turnbull
1987; Naudascher 1987). The "rst resonance originates from symmetric vortex shedding
and the second from alternate vortex shedding.

Even fewer studies consider the possible coupling of the cross-#ow and in-line responses
as reported in several experiments (Alexander 1981; Wu 1989; Moe et al. 1994). For
example, Figure 1 illustrates experimental results by Moe et al. (1994) for a spring supported
rigid cylinder subject to a uniform #ow. Here,> denotes the amplitude of the vibration and
<

r
"</Df

n
is the reduced velocity in which f

n
is the natural frequency of the cylinder in the

cross-#ow direction. The amplitude of the cross-#ow motion when the in-line motion of the
cylinder is "rst eliminated (dashed curve) and then partially restrained by spring supports
(dotted curve) is shown. In the latter case, the natural frequency for in-line vibration was
also adjusted to be twice that of the cross-#ow direction and this coincides with the
frequency ratio between drag and lift. Two-dimensional VIV responses have also been
predicted by direct numerical solutions of the Navier}Stokes equation coupled to the
structure momentum equations (Karanth et al. 1995; Newman & Karniadakis 1995;
Tamura et al. 1997). These coupled responses are often qualitatively di!erent from the
uncoupled responses.

The objective of this paper is to identify the principal mechanisms of coupled in-line and
cross-#ow motions of cable suspensions during VIV. One coupling mechanism originates
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Figure 2. Schematic of cable of length ¸ suspended between two level supports and with uniform #uid #ow
normal to the cable equilibrium plane.
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from the cable alone and is controlled by the nonlinear stretching of the cable centerline.
The second mechanism originates from a postulated relationship between #uid lift and
drag. Both mechanisms follow from the following two-dimensional nonlinear model of the
cable coupled to wake-oscillator models for #uctuating lift and drag.

2. GOVERNING EQUATIONS OF MOTION

The equations of motion for a sagged cable suspension are reviewed below together with
phenomenological (wake-oscillator) models for #uid lift and drag. The cable momentum
equations follow from the continuum model of an elastic cable derived by Perkins (1992)
and extended by Newberry & Perkins (1997) for the case of #uid loading. Wake-oscillator
models for the #uid forces are reviewed and are based on the lift model proposed by Skop
& Balasubramanian (1997) and a drag model motivated by Currie & Turnbull (1987).
A general wake-oscillator model for coupled lift and drag is also proposed.

2.1. CONTINUUM CABLE MODEL

A theoretical model for an elastic cable is reviewed that describes the dynamic response
about a curved (sagged) equilibrium con"guration. A uniform current is also assumed to
#ow perpendicular to the equilibrium plane as illustrated in Figure 2. The cable is
modeled as a one-dimensional, homogeneous elastic continuum with negligible torsional,
bending, and shear rigidities and obeying a linear stress}strain relationship for
extension. The axial extension of the cable is described by the Lagrangian strain of the
centerline.

Figure 2 depicts the cable in the equilibrium (dashed) and dynamic (solid) con"gurations
where U (S, t)";

1
t;#;

2
n;#;

3
b< denotes the three-dimensional displacement from equi-

librium decomposed along the equilibrium tangential t; , normal n; , and binormal b< direc-
tions. Here, S denotes the equilibrium arc length coordinate and t denotes time. The normal
coordinate ;

2
(S, t) describes cross-#ow response while the binormal coordinate ;

3
(S, t)

describes in-line response.
We shall focus on suspensions with small equilibrium sag de"ned by the condition

k"m
e
gD/¹0@1, where k is the nondimensional equilibrium curvature of the cable, m

e
is

the cable mass per unit length accounting for buoyancy, g is the gravitational acceleration,
and ¹0 is the equilibrium tension at the cable mid-span. Following Perkins (1992) and
retaining terms in the equations of motion to order k2 and using the quasistatic stretching
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assumption leads to the following nonlinear equations of cable motion:
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where Ki is the equilibrium curvature of the cable. The axial sti!ness of the cable cross-
section is EAi and m@ denotes the cable mass/length including the added #uid mass
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c
is the cable density, o

f
is the #uid density, C

a
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In equations (1) and (2), F
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A detailed derivation of this result can be found in Perkins (1992).

2.2. DISCRETE MODEL

A low-order cable model is proposed by assuming single-mode approximations for each
coordinate u

2
(s, t) and u

3
(s, t) given by

u
2
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(s), (5)

where <
2i

and <
3j

are the (normalized) linear vibration mode shapes for the ith cross-#ow
and jth in-line modes, respectively (Perkins 1992). The validity of using these single mode
approximations have been con"rmed in Kim & Perkins (2000) by directly integrating
equations (1) and (2) using space}time "nite di!erencing together with wake-oscillator
models for the #uctuating #uid lift and drag. Single-mode responses have also been
considered in prior analytical studies and observed in experimental studies; for example, see
Patrikalakis & Chryssostomidis (1985) and experimental studies cited therein.

Substitution of equation (5) into equations (1) and (2) and application of the Galerkin
method leads to the following discrete model:
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where modal damping terms (damping ratios f
2i

and f
3j

) have been introduced and the
lock-in condition, u

2i
+u

s
is assumed. Details of this derivation procedure can be found in

Perkins (1992). In addition, kN "(o
f
D2)/(8n2S2

t
m@) is the mass ratio of the displaced #uid to

the cable mass. Here, u
2i

(u
3j

) denotes the natural frequency for the cross-#ow (in-line)
mode and u

s
is the vortex-shedding frequency (rad/s). The cross-#ow and in-line motions of

the cable are coupled through the quadratic and cubic nonlinearities due to cable stretching
in equations (6) and (7). Note that the coe$cients of the quadratic nonlinear terms vanish if
<
2i

is taken to be an antisymmetric mode.
The excitation frequency driving the cross-#ow mode is the vortex-shedding frequency

u
s

and that driving the in-line mode is 2u
s

(Bishop & Hassan, 1964). Thus, simultaneous
lock-in in both directions is possible if the natural frequencies are commensurable in a 1 : 2
ratio; i.e., u

3j
+2u

2i
. This can be achieved by adjusting the cable sag so that the suspension

is at one of several &&cross-over points'' as described by Irvine & Caughey (1974). This
simultaneous lock-in may lead to larger two-dimensional motions of the cable and therefore
represents a potential &&worst-case'' resonance.

2.3. UNCOUPLED LIFT AND DRAG MODEL

The following uncoupled model for lift and drag will be referred to herein as Model A.

2.3.1. ¸ift coe.cient

Following Skop & Balasubramanian (1997), the #uctuating lift coe$cient is decomposed as
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where r is a parameter to be evaluated from experimental data. The quantity Q(s, t) is an
excitation source, considered to develop from the spatial response of the cable and
expressed as Q(s, t)"q
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where GM and FM are constants to be evaluated from experimental data, C
L0

is the lift
coe$cient for a stationary cylinder, and C

i
is a modal parameter de"ned as C
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ds)/(:L@D
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ds). The second term on the right-hand side of equation (8) is called the
stall term and provides self-limiting response for all system parameter values.
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2.3.2. Drag coe.cient

Currie & Turnbull (1987) proposed a Van-der-Pol-type wake-oscillator for the #uctuating
drag which is similar to the lift wake-oscillator of Hartlen & Currie (1970). They modi"ed
the vibration frequency of the oscillator from that of Hartlen & Currie (1970) and introduc-
ed additional coupling terms in their model. In this study, we adopt a similar approach in
adapting the wake-oscillator model in Skop & Balasubramanian (1997) for drag.

As described above, the drag coe$cient CI
D

is composed of the mean drag coe$cient
C

Dm
and the #uctuating drag coe$cient C

D
. In this study, the mean drag is ignored by

assuming that it does not a!ect the dynamics of the system and only provides a small static
de#ection in the downstream direction. The #uctuating drag component is
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where the excitation source P (s, t) is expressed as P (s, t)"p
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Here, <M and=M are additional empirical constants to be determined, C
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is the #uctuating
drag coe$cient for the stationary cylinder and C
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ds) is the modal
parameter. This proposed model is used to describe the resonance region created by
alternate vortex shedding. To predict the resonance region due to symmetric vortex
shedding, another term must be added to the right-hand side of equation (11) as described in
Currie & Turnbull (1987).

2.4. COUPLED LIFT AND DRAG MODEL

The lift and drag models above do not recognize the coupling between lift and drag force
components that exists during the vortex-shedding process. To capture this coupling, a class
of wake-oscillator models is proposed. Experimental measurements of in-line and cross-
#ow VIV show that the frequency of the in-line process (drag) is twice that of the cross-#ow
process (lift). This fact suggests that quadratic coupling between lift and drag may exist. To
pursue this idea, equations (9) and (11) are now extended to include quadratic coupling
terms:
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where i
n
, n"1}7, are empirical constants. This coupled lift and drag model will be referred

to herein as Model B. The speci"c quadratic terms added above lead the periodic solutions,
as discussed further in Section 4.2.

3. ANALYSIS OF PERIODIC MOTIONS

Periodic solutions describing steady oscillations during lock-in are sought to equations (6)
and (7), either with the uncoupled #uid force model (9) and (11) (Model A), or with the
coupled lift and drag model (12) and (13) (Model B). The method of multiple-scales (MMS)
(Nayfeh & Mook 1979; Rahman & Burton 1989) is employed by introducing independent
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time scales and uniform expansions of the unknowns up to O (e3) in the new time scales:
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The resonance conditions, the damping coe$cients, and the drag and lift parameters are
also expanded as
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where S
G

is the reduced damping de"ned as S
G
"f/kN (Gri$n et al. 1982). Due to the

symmetry of the cable, the damping ratios in both directions are assumed to be equal, i.e.,
f
2i
"f

3j
"f. The "rst of these captures the fact that the vortex-shedding frequency is close

to the natural frequency of the cross-#ow mode. The frequency of the #uctuating drag is
twice the vortex-shedding frequency (Bishop & Hassan 1964) and this can simultaneously
lead to lock-in of the in-line mode provided that the natural frequency of the in-line mode is
approximately twice that of the cross-#ow mode. This condition, captured by the second
equation in equation (15), is speci"cally selected to represent a worst-case scenario where
lock-in may simultaneously exist for both cross-#ow and in-line directions. The cable
suspension can be tuned to achieve this 1 : 2 ratio of natural frequencies for cross-#ow and
in-line modes by adjusting the cable sag (or tension); refer to linear theory (Irvine
& Caughey 1974). The remaining equations describe the ordering of the cable damping, lift,
and drag parameters.

A standard procedure is used to "nd the periodic solutions to Models A and B and to
access their local stability (Nayfeh & Mook 1979). Substituting equations (14) and (15) into
equations (6) and (7), and either equations (9) and (11) (Model A) or equations (12) and (13)
(Model B), and collecting terms of like powers in e leads to a sequence of linear problems
which are evaluated up to third order. By eliminating &&secular terms'' at each order, one
obtains the eight "rst-order di!erential equations governing the amplitude and phase of
each of the four unknowns (a

i
, b

j
, q

i
, and p

j
). The singular points of these amplitude/phase

equations determine the steady-state periodic solutions of Models A or B. The (linear)
stability of these periodic solutions can then be assessed from the local stability of the
singular points.

4. RESULTS

An example cable suspension is selected to illustrate the major features of two-dimensional
response. Table 1 lists the geometric and material parameters of the cable suspension and
related #uid parameters. In Table 1, j represents the cable parameter de"ned as
j2"(v

l
k¸/(v

t
D))2 (Irvine & Caughey 1974). Table 2 lists the empirical coe$cients for the



TABLE 1
Cable suspension and #uid parameters for example in Section 4

Parameter Value

Cable length (¸) 4)38 m
Cable diameter (D) 0)0155 m
Cable material density (o

c
) 4104)52 kg/m3

Water density (o
f
) 1025 kg/m3

Reduced damping (S
G
) 0)45455

Cable static tension (¹0) 175)74 N
Section modulus (EA) 3)1]106 N
Cable parameter (j) 6n
Cross-#ow natural frequency (u

2i
) 58 rad/s

Added mass coe$cient (C
a
) 1)0

Strouhal number (St) 0)2

TABLE 2
Empirical coe$cients for uncoupled lift and drag wake-oscil-

lator models for example in Section 4

C
L0

0)28 C
D0

0)2
GM 0)3763 FM 1)0027
<M 0)3763 =M 0)10027
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uncoupled lift and drag wake-oscillator models. The coe$cients for the lift wake-oscillator
follow those in Skop & Balasubramanian (1997). For the drag wake-oscillator, we select
<M "GM and =M "FM /10 which yields good agreement with published predictions (Currie
& Turnbull 1987) of in-line response.

4.1. MODEL A: UNCOUPLED LIFT AND DRAG MODEL

We shall begin with results obtained using the uncoupled model for lift and drag (Model A)
and evaluate both uncoupled and coupled cross-#ow and in-line VIV. Any coupling in this
instance derives solely from the geometric nonlinearities describing nonlinear stretching of
the cable centerline.

4.1.1. ;ncoupled cross--ow and in-line <I<

Consider "rst the simplest case of uncoupled response in the cross-#ow and in-line
directions. This follows from eliminating the geometrical coupling terms in equations (6)
and (7) by setting A

2
"A

4
"B

1
"B

2
"0. In addition, consider two predictions of the

uncoupled responses based upon using: (i) the linearized cable model (A
1
"A

3
"B

3
"0),

and (ii) the geometrically nonlinear model (A
1
O0, A

3
O0, B

3
O0).

The cross-#ow response predicted from the linear cable model with the lift wake-
oscillator is discussed "rst and provides a comparison with published results. Figure 3
shows the computed peak-to-peak amplitude for cross-#ow vibration (normalized with
respect to the cable diameter) as a function of the reduced damping parameter. To obtain
this, the damping ratio f was varied and the maximum amplitude was calculated at each f.
Also, the empirical coe$cients GM and FM depend upon S

G
; refer to Skop & Balasubramanian
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Figure 4. Vibration amplitude versus reduced velocity for (a) cross-#ow and (b) in-line vibration.;H
j
, j"2, 3 is

the amplitude at an antinode and f
j
, j"2, 3 is the natural frequency of the cable (Hz) in the cross-#ow and in-line

directions, respectively:*, perturbation analysis; *, numerical results; } } }, results of Hartlen & Currie (1970) in
(a); ---, Currie & Turnbull (1987) in (b).
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(1997). Linearized cable model prediction (solid curve) compares well with the least-squares
"t to the experimental results (Skop & Balasubramanian 1997) and analytical results
(dashed curves) for taut strings and cylinders; see Blevins (1990) and reference to Sarpkaya
(1979) and Gri$n & Ramberg (1982) therein. These predictions and experiments highlight
the self-limiting nature of the responses that leads to a maximum peak-to-peak amplitude of
about two cable diameters.

Figure 4 illustrates the computed amplitudes for both cross-#ow and in-line vibrations as
functions of the reduced #uid velocity in the neighborhood of lock-in. The solid curves



2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

100

(a) (b)

C
ro

ss
-f

lo
w

 a
m

pl
itu

de
, 2U

  /
 D

* 2

P
ha

se
 d

iff
er

en
ce

 (
de

g)

Reduced velocity, Vr  = V/Df2 Reduced velocity, Vr  = V/Df2

90

2 2
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represent the amplitudes predicted by the perturbation analysis and these compare fa-
vorably with results obtained using direct numerical integration of equations (6) and (7)
with equations (9) and (11); see asterisks. Moreover, the results agree with published
predictions for cross-#ow (Hartlen & Currie 1970) and in-line (Currie & Turnbull 1987)
vibration; see dashed curves. Note that the maximum amplitude for cross-#ow and in-line
vibration occur near <

r
+ 6 and 2)5, respectively. The lock-in ranges for cross-#ow and

in-line vibration are 3(<
r2
(6)5 and 1)5(<

r3
(3)5, respectively. In short, the wake-

oscillator models used with the linearized cable models capture the basic characteristics of
VIV well-known in the literature.

Geometric nonlinearities describing the stretching (but no coupling) of a sagged cable are
now introduced to the cable model. The nonlinearities in general produce multiple periodic
motions and hysteresis as seen in the following results. In all "gures that follow, solid
(dashed) curves denote stable (unstable) periodic solutions obtained from the perturbation
analysis.

Figure 5 illustrates (a) the computed vibration amplitude for cross-#ow response and (b)
the phase angle between the lift and the cross-#ow displacement. The results shown in
Figure 5(a) exhibit a softening behavior at small amplitudes, where the quadratic nonlin-
earity [term associated with A

1
in equation (6)] dominates and a hardening behavior at

large amplitudes where the cubic nonlinearity dominates [term associated with A
3

in
equation (6)]. These nonlinearities create multiple stable periodic solutions (distinguishable
as either large or small amplitude responses) with associated hysteresis as the reduced
velocity increases or decreases. Jumps occur at the boundaries of the lock-in region over
which the phase angle changes by 903, as shown in Figure 5(b). Hysteresis has been reported
in several experiments (Brika & Laneville 1993; Fujarra et al. 1998) and the predicted
cable response shows a qualitative resemblance to these experimental results. Thus,
hysteresis can be caused by structural nonlinearities alone (as well as by other nonlinear
mechanisms).
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Similar conclusions can be drawn from Figure 6 which shows the amplitude and phase
for in-line response. Note that the observable hardening behavior originates from the cubic
nonlinearity [term associated with B

3
in equation (7)] due to cable stretching. Note also

that the maximum amplitude is approximately the same as for the linear cable model
[Figure 4(b)] but the lock-in range is now increased by nearly a factor of two.

4.1.2. Coupled cross--ow and in-line <I<

Nonplanar cable responses result from the coupling between cross-#ow and in-line motions
due to two major mechanisms: (i) structural nonlinearities, and (ii) coupled lift and drag.
Here, attention is focused "rst on the coupling solely from the structural nonlinearities.

Structural coupling of the in-line and cross-#ow coordinates originates through the
quadratic and cubic nonlinearities associated with cable stretching; refer to terms with
coe$cients A

2
, A

4
, B

1
, and B

2
in equations (6) and (7). Figure 7 illustrates the computed

cross-#ow and in-line amplitudes as a function of the reduced velocity for the coupled cable
model. Note that a nonplanar solution branch (;

2
O0 and ;

3
O0) bifurcates from the

planar solution branch (;
3
"0). The terms in equations (6) and (7) with coe$cients A

2
, A

4
,

B
1
, and B

2
become secular when the natural frequencies are close to the internal resonance

condition u
3j

+2u
2i

and this leads to strong modal interactions. Examination of the
di!erential equations (6) and (7) with equations (9) and (11) reveals that planar response
(trivial in-line motion b

j
"0) is always a possible (steady-state) solution. Nonplanar

(coupled cross-#ow and in-line) solutions exist when the cross-#ow response exceeds
a critical amplitude.

The perturbation analysis also reveals that the out-of-plane response is largely controlled
by the 1 : 2 internal resonance of the cross-#ow and in-line modes rather than the #uctuating
#uid drag. Note also that the predicted periodic solutions of Figure 7 are always unstable
(except for a very small region near <

r2
&6 in Figure 7(a)). This fact is con"rmed by results

obtained by the direct numerical integration of equations (6) and (7) with equations (9) and
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"4, 5, and 6. The map is created
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j
every cycle of the cross-#ow motion when aR

i
"0. (a) <

r2
"4; (b) <

r2
"5; (c) <

r2
"6, large

amplitude (d) <
r2
"6, small amplitude.
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(11) as illustrated in the PoincareH maps of Figure 8. For instance, at <
r2
"4 and 5, the maps

illustrate quasiperiodic motions having well-de"ned symmetry with respect to the equilib-
rium plane of the cable. At <

r2
"6, two attractors coexist with the larger amplitude

response being a periodic motion [Figure 8(c)] and the smaller amplitude response being
a likely chaotic motion [Figure 8(d)].
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4.2. MODEL B: COUPLED LIFT AND DRAG MODEL

The wake oscillator model of Section 2.4 is proposed as one means to recognize the
coupling of lift and drag during the vortex-shedding process. Quadratic coupling terms are
introduced, noting that the #uctuating drag occurs at a frequency twice that of lift.

A "rst-order perturbation analysis is carried out on Model B and reveals that, of all
possible quadratic coupling terms, only those shown in equations (12) and (13) a!ect the
periodic solutions (to "rst order). Moreover, the terms with constants i

1
and i

2
have

the same qualitative e!ect on this dynamical system. Thus, without loss of generality, the
coupling terms that a!ect periodic response can be parameterized by four coe$cients;
namely,

B
1
"A

i
1

4u
2i

#

i
2
u

2i
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4
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8u
2i

#

i
6
u

2i
8 B, B4

"A
i
7
8 B .

We now return to the previous example suspension and re-evaluate the predicted
response with the added #uid coupling terms above. To this end, we select B

1
"!30,

B
2
"175, B

3
"!1400 and B

4
"1600 based upon comparison of the computed response

with published experimental measurements (on #exibly mounted cylinders) as reported in
Wu (1989) and Moe et al. (1994).

Figure 9 illustrates the predicted cable responses for Model B (with the linearized cable
model). These responses are qualitatively di!erent from the results of Model A. In particu-
lar, note that two relative maxima exist for the in-line and cross-#ow amplitudes within the
lock-in region and that the in-line response is substantially greater than that predicted by
Model A for uncoupled lift/drag.

Consider next a qualitative comparison between the in-line and cross-#ow VIV pre-
viously measured on a spring supported rigid cylinder (Wu 1989) with that predicted for
a #exible cable. The justi"cation for making such a comparison is that the near-wake
properties along the cable are similar to those of a rigid cylinder for comparable vibration
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Figure 10. Computed two-dimensional motion of the cable cross-section at s"(11¸)/(24D) using the new
coupled wake-oscillator model. Results reported for (a) <
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Figure 11. Measured two-dimensional motion of the cylinder cross-section when both cross-#ow and in-line
directions are spring supported. Results reported for (a) <

r
"4)9508, (b) 5)6911, (c) 6)3860, and (d) 6)7116.

Reproduced from Wu (1989).
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amplitudes and frequencies (Ramberg & Gri$n 1974, 1976). The predicted amplitudes of
the cross-#ow and in-line motions of the cable during lock-in are illustrated in Figure 9 over
the reduced velocity range that includes lock-in in both directions. The results of Figure 9(a)
for cross-#ow response exhibit the two relative maxima as reported by Moe et al. (1994) for
a #exibly mounted cylinder; refer to Figure 1.

The resulting nonplanar motion of the cable cross-section is shown in Figure 10 for four
values of the reduced #uid velocity within the lock-in range. The trajectory of the cable is
a "gure of eight that bends towards the upstream direction at lower reduced velocities and
then towards the downstream direction at higher reduced velocities within the lock-in
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region. These predicted results are also in good qualitative agreement with the experimental
measurements reported in Wu (1989) and Moe et al. (1994) for spring-supported cylinders.
For example, Figure 11 illustrates the measured nonplanar trace of the cylinder cross-
section for a comparable range of reduced velocity as reproduced from Wu (1989). In this
example, the natural frequency of the in-line direction is twice that of cross-#ow direction,
i.e., u

x
/u

y
"2. It is emphasized that while this comparison between the response of

a #exible cable and a #exibly supported cylinder shows remarkably similar features,
a quantitative validation of the results of this analytical study would require a dedicated
experiment on cable suspensions.

5. CONCLUSIONS

A model for an elastic cable with small sag subject to a uniform cross-#ow is presented
which captures the quadratic and cubic nonlinearities describing nonlinear cable stretching.
Fluid forces acting on the cable are modeled using (phenomenological) wake-oscillator
models for lift and drag. A discrete four-degree-of-freedom model is developed for studying
the periodic motions representing planar and nonplanar vortex-induced vibrations. A per-
turbation analysis is reviewed that provides the periodic solutions and their stability within
the lock-in region. Both planar (pure cross-#ow and pure in-line) motions and nonplanar
(coupled in-line and cross-#ow) motions are evaluated.

Pure cross-#ow and pure in-line responses predicted by the linearized cable models
capture the basic characteristics of VIV and provide good agreement with published results.
However, qualitatively di!erent behaviors are predicted when the cable geometric nonlin-
earities are included. Multiple stable periodic solutions coexist within the lock-in regimes
for both cross-#ow and in-line vibrations and both exhibit hysteresis.

Coupled cross-#ow and in-line motions may originate from two coupling mechanisms:
structural nonlinearities and coupled lift/drag. The structural nonlinearities alone
produce qualitatively di!erent dynamic characteristics compared to the limiting
uncoupled models including nonplanar and aperiodic motions. Both planar and non-
planar responses coexist with nonplanar responses bifurcating from the planar responses.
A coupled lift and drag model is proposed in the form of a two-dimensional wake-oscillator
with quadratic coupling terms. The proposed model captures the salient features of the
nonplanar responses that have been observed in prior experiments on spring supported
cylinders.
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